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I. INTRODUCTION

. ——

For many nonmetallic substances such as aqueous salt solutions, the
phenomenon of electrical conductivity occurs via the movement of "free
ions." Materials cf this kind are referred to as electrolytes. The
conductivity of an electrolyte depends upon the material, concentration,
temperature, and the geometry of the system with respect to the electrodes
used in the measurement. It is desirable to remove the geometric dependence,
which is done as follows. The conduitanci L is defined as the reciprocal of
resistance and is expressed as ohms - (§ ‘). The conductance of a homogeneous
body of uniform cross section is proportional to the cross section A and
inversely proportional to the length &;

(1)

1 1A -
L R = 1 where I

w0 fr—

» o
[ ]

| %

L is the specific conductance and k=2/A is the cell constant. Thus, the
specific conductance of a solution in a cell of arbitrary design can be
obtained by first determining the cell constant and then measuring the
resistance of the solution in that cell. The cell constant can be determined
by either a geometry measurement or by measuring the resistance of a solution
of known specific conductance. Solutions of potassium chloride are generally
used for this purpose. The specific conductance, because of its sensitivity
to the concentration (c) of the conducting species, i3 a poor parameter to
compare the intrinsic behavior of various electrolytes. This concentration
dependence can be removed by use of molar conductance M which is defined as

M = L/c
where ¢ is in gram-moles per emd, If c is given in gram-moles per liter of
solution then

1000L .
c

M= (2)

In addition, the ability of an electrolyte to carry current depends not only
on the ionic concentration, but the ionic valence (ne) as well. The equivalent
conductance, A can now be defined as

A= M/n .
e

For the class of salt solutions under consideration here, the valency will be
one, thus the molar and equivalent conductances are identical.
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Now that a few of the basic parameters of conductance have been defined,
we will discuss some of th? experimental problems encountered during the
course of the measurement. The circuit used for measuring conductance is
extremely simple and is shown in Figure 1. 1In this figure, A and V are Fluke
Model 80A0A RMS multimeterc, OSC is a Tektronix FG 502 function generator, and
C is the conductivity cell.

Figure. 1. Electrical Circuit Used for Performing Conductivity
Measurements on Aqueous Salt Solutions.

The multimeters have sufficient sensitivity to measure voltages and currents
to within 0.1% precision over the ranges of interest._ The oscillator produces
a sine wave and is continuously variable from 1 to 10’ Hz. The ability to
vary the frequency is very useful in determining the proper operations of the
conductance cell, which will be discussed shortly.

II. CELL DESIGN FACTORS

Discussions in the literature have indicated thet as many as seven
different cells are required to accurately measure the conductance of
electrolytic solutions over the entire concentration range from infinite
dilution to saturation. For expedience it was decided to use cne celi that
would have a minimal error over most of the coacentration range with emphasis
on accuracy for the more concentrated solutions which are representative of
actual liquid propellents,

Sasse'? suggested the use of a Hamilton syringe for the conductivity
cell. The Hamilton syringe is attractive because the stainless steel needle
and plunger form the electrodes 2nd the distance (2) can be varied by movement
of the plunger. The cell size selected tak~s a maximum of 100 microuliters of
sample, and is easily immersible in a thermostatically controlled bath for
temperature dependence studies. This type of cell was used in Figure 1.

1. Many of these phenomena have been discussed in the 1928-1935 literature.
A good review is given in the bnok Electrolyte Solutions by Robiascn and
Stokes, London Butterworths Scientific Publications, 1955.

2. R.A. Sasse', private communication, 1985.
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The resistance values obtained as a function of frequency and distance were

0 plotted for various concentrations of aqueous hydroxylammonium nitrate {(HAN)

. solutions. The HAN solutions we obtained were nominally 12 M, and we
accurately dilnted them to produce the other concentrations. It shcould be
mentioned that HAN is dissolvable in water to concentrations greater than 17 M
at room temperature. Figures 2-4 display such data for 0.10, 1.0, and 13 M
HAN solutions, respectively. As can be seen, the resistance is definitely a
function of frequency; furthermore, the resistance does not scale linearly
with cell length (&). This non linearity is shown in Table 1 by ratioing the
resistance values with tge L fftio 4.5 cm/1.5 cm for the three concentrations
at a fixed frequency (10~ sec "), The resistance values for the 1.0 and 13 M
HAN solutions are observed to be similar, and it is also observed that the
dependence on frequency and length is correspondingly similar. At 0.10 M, the
dependence on freyuency is less and the cell resistance ratio is closer to the
linear value of 3.00.

TABLE 1. Variation of Resistance Ratios as a Function of Concentration
for 100 Microliter Hamilton Syringe Conductivity Cell at 1 KHz

Ceil Length Ratio Cell Resistance Ratio
0.10 M 1.0 M 13 M
4.5 56.92 _ . 4.432 . 3.230 _ «
1.5 - 3-00 1.13 2.69 2.235 1.98 1.805 1.79
2.88%% 3.06%* 3.03%*

* - These values are obtained at f=1000 Hz.
** - These values are obtained by extrapolating Figures 2-4 to infinite
frequency, which results in an intercept on the ordinate.

Clearly, this is an unsuitable cell design to use in making reliable
conductivity measurements oo HAN solutions. 1In order to construct a more
appropriate cell, the physical reasons for these variations need to be
understood.

It has been known for many years that polarization effects can occur
between electrolytic solutions and the electrodes. In fact, conductivity
measurements are made with alternating curreant to minimize this problem.
Through detajled experimental studies and models of diffusion at the electrode
it was foand”’ that the polarization effect causes a resistance in series with
the electrelytic solution and furthermore that this resistance varied
inversely with the square root of the frequency (f). Taking account of the
polarization effect, one can write

3. G. Jones and S, Christian, "The Measurement of the Conductance of
Electrolytes. VI. Galvanic Polarization by Alternating Curreat,"
J. Am. Chem. Soc., Vol. 57, p. 272, 1930.
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Figure 2. Resistance Versus Frequem:y“”2 for a 0.10 M HAN Solution
Contained in a 100 Microliter Hamilton Syringe. Three Path Lengths
(42) are Displayed. T = 20°C.

Ry = Ry + R/VE (3)

for the total resistance (Rt) of a conductivity cell, where R, is the solution
resistance and R_ is the resistance created by polarization effects. As f
approaches infingty R, approaches R, however f cannot be increased
arbitrarily high because of enother effect to be discussed shortly. Figures
2-4 al}l show that R_ indeed decreases with increasing frequency indicating
that the Hamilton syringe cell is influenced by polarization effects. The
cell length and cell resistance ratios for the Hamilton syringe can also be
explained in this context. The most dilute solution (0.10 M HAN) gives a cell
resistance ratio <losest to the cell length ratio (see Table 1). The reason
for this result is that the solution resistance, Rs, is highest in this case
providing the major contribution to R.. 1If one does a straight line
extrapolation to infinite frequency, the cell resistance ratios obtained €from
the intercepts provide cell resistance ratios which are in line with the cell

10




length ratio (again see Table 1). Although measurements of R_ could be made
from such extrapolations, it would be much better to design a cell that
minimizes the polarization effects.
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Figure 3. Same as Figure 2, Except that a 1.0 M HAN Solution is Used.

One can see from equation (3) that increasing R_ makes R_ a smaller

. . . . . . 8
contribution. This can be accomplished by increasing the vallle of the cell
constant (k=2/A). Howeve:, increasing the cell constant by decreasing A has
been shown to create adverse effects. R_ itself is minimized by use of large
area inert electrodes usually made from platinum. In many cases these
electrodes are electroplated with platinum black to increase the effective
surface area and this has been shown to further decrease R_. Thus £ is the
choice variable to use in increasing the cell constant. P

There is & danger in going to extremely large values of R_ because of
shunting effects. That is, impedance paths may appear which become the same
order of magnitude as the resistive path through the solution. An equivalent
circuit for the conductivity cell can be represented by Figure 5,

11
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Figure 4. Same as Figure 2, Except that a 13 M HAN Solution is Used.

0sC R:

Figure 5. An Equivalent Circuit Representing the Shunting
Effect on a Conductivity Cell

12
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where K, and C; are shunting resistances and capacitances. The circuit
impedance (Z) 1s given by

i i, __ 1
Rt R, + X

z 1 c

whera X is the capacitive reactance.

¢ ~ 72nfC
2nEC,

Separating out the real part of th~ impedance (R) we have after some algebra

2
RtRI + Rt )

7 2
(R, + R+ Xo

R =R, (1r-

Since all of the values contributing to the second term on the right are
positive, the shunt always lowers the resistance, an effect opposite to that
of polarization. To simplify matters a bit, assume R;=0, then

R
t

1+4n2£202Rt2

R =

we ses tge capacitance effects are minimized by keeping the term

4nf°C R “<<1l. Practically speaking, one does not want to use extremely large
values of f or R,. Details of the shunting effect are discussed by Jones and
Bollinger.

In summary, it is found that for electrolytic solutions of low
resistance, i.e., concentrated solutions, one has to watch for polarization
effects, while for electrolytic solutions of high resistance, i.e., dilute
solutions, shunting effects can become important. It would be desirable to
have a conductivity cell that exhibited a frequency independent resistance
over a substantial frequency range, indicating the above-mentioned effects are
negligible. The next section describes such a cell together with some
conductance measurements.

ITI. TEST AND MEASUREMENT

From the arguments contained in the last section, a new conductivity cell
was constructed from a glass U-tube having a path length of 58 cm, an inside
diameter of 0.70 cm, and an outside diameter of 0.90 cm. The electrodes are
0.6 cm diameter platinum discs which are held in position by a non-conductive
support which rests on the top of the U-tube. This arrangement allows for
easy removal of the electrodes for cleaning purposes.

4. G. Jones and G. Bollinger, "The Measurement of the Conductance of
Electrolytes. III. The Design of Cells," J. Am. Chem. Soc., Vol. 53,
p. 411, 1931.

13
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There are several dramatic geometric changes in the cell design over the
100 microliter Hamilton syringe; the path length £ is about 10 times larger
and the electrode area is about 15 times larger. Thf cell constant for this
cell is calculated from the geometry to be 15G.7 cm ~. The conventional way
to obtain the cell constant is to measure the resistance of a known
solution. Using a .100 N KCl solution, the cell constant is measured to be
145.3 cm ', This agreement is quite good considering the approximate nature
of the geometric measurement. A logical next step in testing this cell is to
look at the frequency dependenre of the resistance for various solutiomns,
Figure 6 illustrates three cases: a 0.10 M, 1.0 M, and !3 M HAN solutions.
We can see from the figure that the resistance is found to be independent of
frequency over the range 500 to 10,000 Hz. This is indeed an improvement over
the Hamilton syringe. As a final test, several concentrations of aqueous
sodium nitrate solutions were preparad and their resistances were measured
with the cell. These experimental results together with published data for
the conductance of aqueous NaNO3 are given in Figure 7. Excellent agreement
is obtained between our measurements and published results. These
experimental checks indicated that this cell was functioning properly; we
therefore used this cell to obtain conductance measurements on HAN as a
function of concentration.

Figures 7 and 8 illustrate this data. Figure 7 is a plot of specific
conductivity of HAN versus concentration. Data for aqueous NaNO, if shown as
well to indicate the similarity of this conductivity data with that cf HAN.
The solubility of NaNO, in H,0 is much less than that for HAN; consequently,
data for aqueous NaNO4 only goes to approximately 6 M., Figure 8 shows the
equivalent conductance as a function of the square root of the concentrations.
There are several reasons for plotting data in this fashion. The equivalent
conducta?7% shows what is happening on a "per ion" basis, and when plotted
versus ¢ /“, can be compared with the dilute solution theories of Dehye and
Hickel and Onsager. These theories say in effect that the electric forces
between ions tend to maintain a space and oppose the motion of an ion under
the influence of an outside electf}g field, and thus cause a decrease in tha
conductance proportional to the c . Further measurements of conductance in
dilute HAN solutions will be performed. The meaning of the conductance curves
and possible similarities with conclusions drawn from Raman spectra are
discussed in other reports.

5. S.W. Bunte, J.A. Vanderhoff, and P.M. Donmoyer, "Electrical Conductivity
Measurements on Hydroxylammonium Nitrate, LGP 1845 and LGP 1846,"
Proceedings of the 22nd JANNAF Combustion Meeting, to be published.

6. J.A. Vanderhoff and S.W. Bunte, "Laser Raman Studies Related to Liquid
Propellants: Structural Characteristics," Proceedings of 22nd JANNAF
Combustion Meeting, to be published.

14




16

-] - | a [ L]
14}
-
12|
i FREQUENCY RESISTANCE (kQ)
— 10}k (kHz) |0 0I1M|O1OM| AI30M
S 0.5 1569 | 2020 | 1.39
w T 1.0 1566 | 2.014 1.38
S stk 20 1560 | 2.007 1.37
R 50 15.59 | 2.013 1.37
2 r 10.0 15.56 | 2024 1.38
[ ]
-4 6
r-
4 +
2+ O—0 O O O
A—D—N A —A
0 1 | i | I 1 1 | 1 J
0.0 1.0 20 30 40 5.0

FREQUENCY /2 (100s'/?)

Figure 6. Resistance Versus 1'-‘requency“1/2 for 0.10, 1.0, and 13 M HAN
Solutions Using the Constructed U-Tube Conductivity Cell.
T = 20°C.
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